if (a+b)=5 and (ab)=6 find the value of (a-b)^2
Answers
Answered by
3
Answer:
a - b = 1
Step-by-step explanation:
(a+b)^2 = (a-b)^2 + 4ab
(5)^2 = (a-b)^2 + 4(6)
25 - 24 = (a-b)^2
therefor (a-b)= 1
rahulmandviya:
dont chat here the will deleye my ans
Answered by
0
We have,
(a+b) = 5 and (ab ) =6
So, (a+b)^2= a^2 + b^2 + 2ab
=> 25 = a^2 + b^2 + 12
=> 25 - 12 = a^2 + b^2
=> a^2 + b^2 = 13......(1)
Thus, (a-b)^2 = a^2 + b^2 - 2ab
= 13 - 12 ( using 1 )
= 1. Ans
(a+b) = 5 and (ab ) =6
So, (a+b)^2= a^2 + b^2 + 2ab
=> 25 = a^2 + b^2 + 12
=> 25 - 12 = a^2 + b^2
=> a^2 + b^2 = 13......(1)
Thus, (a-b)^2 = a^2 + b^2 - 2ab
= 13 - 12 ( using 1 )
= 1. Ans
Similar questions