Math, asked by deeppaulrickrock888, 4 months ago

if a+ b= 5and a- b =√17 then the value of ab should be​

Answers

Answered by BlessedMess
170

Given :

  • a + b = 5
  • a - b = √17

To find :

  • The value of ab

Formula used :

  • \rm{4ab=\boxed{(a+b)^2-(a-b)^2}}

Now by substituting the values,we get

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\:4ab=(5)^2-(√17)^2}}\end{gathered}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;4ab=25-17}}\end{gathered}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;4ab=8}}\end{gathered}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;ab=\cancel\frac{8}{4}}}\end{gathered}

\begin{gathered}\:\:\:\:\:\displaystyle{\sf{\leadsto\;ab=2}}\end{gathered}

Basic formulas to know:

  • (a+b)² = a² + b² + 2ab
  • (a-b)² = a² + b² - 2ab
  • (a+b+c)² = a² + b² +c²+2(ab+bc+ca)
  • a²-b²=(a+b)(a-b)
  • {ab=(\frac{a+b}{2})^2-(\frac{a-b}{2})^2}
Answered by amitnrw
20

Given :  a+b=5 and a-b = √17

To Find : Value of ab

Solution:

Method 1

a+b=5  

a-b = √17

Adding both

=> 2a = 5 + √17

Subtracting

2b = 5 - √17

(2a)(2b) = (5 + √17)(5 - √17)

=> 4ab = 25 - 17

=> 4ab = 8

=> ab = 2

Method 2

a+b=5  

a-b = √17

Squaring both side

=> a² + b² + 2ab = 25

   a² + b² - 2ab =  17

=> 4ab = 8

=> ab = 2

Learn More:

a+b=5 and a-b = √17  

https://brainly.in/question/36124205

Solve the following x+y/xy=5 and x-5/xy=7 - Brainly.in

https://brainly.in/question/8168066

Similar questions