Math, asked by uzma67, 1 year ago

If ( a+b)=6 and 2ab=17.5,find the value of 2a square + 2b square


sparsh132: a^+b^=18.5
uzma67: sorry no

Answers

Answered by pranavsk1525
18

Hello there,


Here's the answer. Please mark it as the brainliest.


Attachments:

uzma67: thanks
Answered by payalchatterje
2

Answer:

Required value of 2 {a}^{2}  + 2 {b}^{2} is 37

Step-by-step explanation:

Given,

(a + b) = 6 and 2ab = 17.5

Now,

2 {a}^{2}  + 2 {b}^{2}  \\  = 2 ({a}^{2}  +  {b}^{2} ) \\  = 2 [{(a + b)}^{2}  - 2ab] \\  = 2 ({6}^{2}  - 17.5) \\  = 2 \times (36 - 17.5) \\  = 2 \times ( 18.5) \\  =  37

Here applied formulas are

 {a}^{2}  +  {b}^{2}  \\  =  {(a + b)}^{2}  - 2ab

This is a problem of Algebra.

Some important Algebra formulas.

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

a² − b² = (a + b)(a − b)

a² + b² = (a + b)² − 2ab

a² + b² = (a − b)² + 2ab

a³ − b³ = (a − b)(a² + ab + b²)

a³ + b³ = (a + b)(a² − ab + b²)

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

Similar questions