if a-b =6 and a square + b square =42, find the value of ab
Answers
Answer:
Answer
Acceleration = - 1 m/s²
Option (1)
\orange{\bigstar}★ Given \green{\bigstar}★
Initial velocity of a car is 10 m/s
Final velocity of the car is 0 m/s
Distance travelled by the car is 50 m
\orange{\bigstar}★ To Find \green{\bigstar}★
Acceleration of the car
\orange{\bigstar}★ Formula Applied \green{\bigstar}★
3rd equation of motion
→ v² - u² = 2as
where ,
v denotes final velocity
u denotes initial velocity
a denotes acceleration
s denotes distance / displacement
\orange{\bigstar}★ Solution \green{\bigstar}★
Initial velocity , u = 10 m/s
Final velocity , v = 0 m/s
Distance , s = 50 m
Acceleration , a = ? m/s²
Apply formula ,
⇒ v² - u² = 2as
⇒ (0)² - (10)² = 2a(50)
⇒ 0 - 100 = 100a
⇒ 100a = - 100
⇒ a = - 1 m/s²
Note : Negative sign of acceleration denotes retardation
__________________________
Step-by-step explanation:
Given
a - b = 6
a²+ b² = 42
To find
The value of 'ab'
We know that,
given, a - b = 6 , a²+ b² = 42
Substituting the values,
(6)² = 42 - 2ab
36 = 42 - 2ab
2ab = 42 - 36
2ab = 6
ab =
ab = 3
Therefore , the value of ab = 3