Math, asked by avasha, 1 year ago

If a+b=6 and ab = 8, evaluate (1) a² + b2 and (2) a - b​

Answers

Answered by ihrishi
3

Answer:

(a + b)^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\  \therefore \: (6)^{2} =  {a}^{2}  +  {b}^{2}  + 2 \times 8 \\ \therefore \: 36=  {a}^{2}  +  {b}^{2}  +16 \\ \therefore \: 36 - 16=  {a}^{2}  +  {b}^{2}  \\  \therefore \: 20=  {a}^{2}  +  {b}^{2}  \\  \implies \: \huge \fbox{  {a}^{2}  +  {b}^{2}  = 20} \\Now\\</p><p>(a - b)^{2}  = (a + b)^{2} - 4ab\\</p><p> \implies  (a - b)^{2}  =6^2 -4\times 8\\</p><p> \implies  (a - b)^{2}  =36-32\\</p><p> \implies  (a - b)^{2}  =4\\</p><p> \implies \huge \fbox {a - b = 2}

Answered by sujatashailesh34
2

Step-by-step explanation:

A)

  1. Squaring a +b

2. Using formula 'a² + b²'

a² + b² = a + b+2ab

a²+ b² = 6 + (2×8)

a² + b² = 6 + 16

a² + b² = 22

B)

  1. Squaring 'a-b'
  2. Using formula 'a² - b²'

a² - b² = a + b - 2ab

a² - b² = 6 - (2×8)

a² - b² = 6 - 16

a² - b² = (-10)

a - b = √10

Similar questions