Math, asked by sukhjinder31, 6 months ago

If a +b = 6 and ab = 8, evaluate (i) a2 + b2 and (ii) a - b.​

Answers

Answered by Anonymous
0

Step-by-step explanation:

{a+b}^2 = a^2+b^2+2ab

36 -16 = a^2+b^2

= 20

{a-b}^2 = 20 -16

a-b = 4

Answered by NewGeneEinstein
9

Step-by-step explanation:

Given:-

a+b=6

ab=8

To find:-

{\textcircled {\textsf {1}}}a^2+b^2

{\textcircled {\textsf {2}}}a-b

Solution:-1

  • a+b=6
  • ab=8

\\\qquad\quad\sf {:}\longrightarrow a+b=6

\\\qquad\quad\sf {:}\longrightarrow (a+b)^2=6^2

\\\qquad\quad\sf {:}\longrightarrow a^2+b^2+2ab=36

  • Substitute the value of ab

\\\qquad\quad\sf {:}\longrightarrow a^2+b^2+2 (8)=36

\\\qquad\quad\sf {:}\longrightarrow a^2+b^2+16=36

\\\qquad\quad\sf {:}\longrightarrow a^2+b^2=36-16

\\\qquad\quad\bf {:}\longrightarrow a^2+b^2=20

\rule {220}{1}

Solution-2:-

\\\qquad\quad\sf {:}\longrightarrow a-b

\\\qquad\quad\sf {:}\longrightarrow (a-b)^2

\\\qquad\quad\sf {:}\longrightarrow a^2+b^2-2ab

\\\qquad\quad\sf {:}\longrightarrow 20-2 (8)

\\\qquad\quad\sf {:}\longrightarrow (a-b)^2=20-16

\\\qquad\quad\sf {:}\longrightarrow (a-b)^2=4

\\\qquad\quad\sf {:}\longrightarrow a-b=\sqrt {4}

\\\qquad\quad\bf {:}\longrightarrow a-b=2

Similar questions