Math, asked by Diliprocky, 1 year ago

if a+b =60 a-b =40 and a =22 find b

Answers

Answered by josbuttler63
3
Hey mate your answer is
a+b=60, a=22
b=60-22
b=38
A-b= 40
-b= 40-22
b= -18
please mark me as Brainliest

Diliprocky: its a vector
Answered by BrainlyQueen01
14
Answer :

 \bf | \vec{b}|  = 46

Step-by-step explanation :

We have ;

 | \vec a+ \vec b|  = 60 \\  \\  \sf{squaring \: both \: sides}.. \\  \\ (| \vec a+ \vec b| ) {}^{2}  =( 60) {}^{2}  \\  \\ | \vec a+ \vec b| {}^{2}  =3 600 \\  \\  | \vec a| {}^{2}  +  | \vec b|  {}^{2}  + 2. | \vec a|   . | \vec b|  = 3600...(i) \\  \\  | \vec a -  \vec b|  = 40 \\  \\  \sf{squaring \: both \: sides}.. \\  \\ (| \vec a -  \vec b| ) {}^{2}  =( 40) {}^{2}  \\  \\ | \vec a -  \vec b| {}^{2}  =1600 \\  \\  | \vec a| {}^{2}  +  | \vec b|  {}^{2}   - 2. | \vec a|  . | \vec b|  = 1600...(ii) \\  \\  \sf on \: adding \: (i) \: and \: (ii) \\  \\   | \vec a| {}^{2}  +  | \vec b|  {}^{2}  + 2. | \vec a|  . | \vec b|  +  | \vec a| {}^{2}  +  | \vec b|  {}^{2}   - 2. | \vec a| . | \vec b| \\  = 3600 + 1600 \\  \\ 2( | \vec a| {}^{2}  +  | \vec b|  {}^{2} ) =  5200 \\  \\  | \vec a| {}^{2}  +  | \vec b|  {}^{2}  = 2600 \\  \\ 22 {}^{2} +  | \vec b|  {}^{2}  = 2600 \\  \\  | \vec b|  {}^{2}  = 2600 - 484 \\  \\ | \vec b|  {}^{2}  = 2116 \\  \\   \bf | \vec b|  = 46

Hence, \bf | \vec b|  = 46
Similar questions