If A - B = 60° then sin square A + sin square B - SinAsinB =
Answers
Given :-
- (A - B) = 60° .
To Find :-
- sin²A + sin²B - sinA*sinB = ?
SOLUTION :-
→ sin²A + sin²B - sinA*sinB
Adding & subtracting sinA*sinB ,
→ sin²A + sin²B - sinA*sinB - sinA*sinB + sinA*sinB
→ sin²A + sin²B - 2sinA*sinB + sinA*sinB
Comparing it with a² + b² - 2ab = (a - b)² ,
→ (sinA - sinB)² + sinA*sinB
using sinC - sinD = 2sin(C-D/2)*cos(C+D/2)
→ [ 2sin(A - B/2)*cos(A+B/2) ]² + sinA*sinB
Putting (A - B)= 60° ,
→ [ 2 * sin30° * cos(A+B/2) ]² + sinA*sinB
→ (2 * 1/2 * cos(A+B/2) )² + sinA*sinB
→ cos²(A+B/2) + sinA*sinB
Now,
→ cos²(A+B/2) + (2*sinA*sinB)/2
using 2*sinA*sinB = cos(A-B) - cos(A+B)
→ cos²(A+B/2) + (1/2) [ cos(A-B) - cos(A+B) ]
→ cos²(A+B/2) + (1/2) [ cos60° - cos(A+B) ]
→ cos²(A+B/2) + (1/2) [ (1/2) - cos(A+B) ]
→ cos²(A+B/2) - cos(A+B)/2 + (1/4)
Now, using cosA = 2cos²(A/2) - 1 , we get,
→ cos²(A+B/2) - (1/2) {2cos²(A+B/2) - 1} + (1/4)
→ cos²(A+B/2) - cos²(A+B/2) - (1/2) + (1/4)
→ (1/4) - (1/2)
→ (1 - 2)/4
→ (-1)/4 (Ans).
(Nice Question).
Sin²A + sin²B - sinA × sinB
________________________
Adding and subtracting
sin²A + sin²B - sinA × sinB + sinA× sinB
sin²A + sin²B - 2sinA × sinB + sinA × sinB
________________________
Comparing it with a² + b² -2ab = ( a - b² )
( sinA - sinB )² + sinA × sinB
________________________
using sinC - sinD = 2sin(C- D/2) × cos( C+ D/2 )
[2sin (A -B/2) × cos(A +B/2)² + sinA × sinB
________________________
Let's put (A - B ) = 60°
➠ [2 × sin30° × cos(A + B/2) ]² + sinA × sinB
➠ (2 × 1/2 × cos(A +B/2) )² + sinA × sinB
➠ cos²(A + B/2) sinA × sinB
➠cos²(A +B/2) + (2 × sinA × sinB )/2
________________________
using 2×sinA×sinB = cos(A-B) - cos (A+B)
➠cos²(A+B/2) + (1/2) [cos(A-B) - cos(A+B)]
➠cos²(A + B/2) + (1/2) [cos60° & cos(A+B)]
➠cos²(A+B/2) +(1/2) [(1/2) - cos(A+B) ]
➠ cos²(A+B/2) - cos(A +B)/2 + (1/4)
________________________
using cosA = 2cos²(A/2) - 1,
➩cos²(A +B/2) -(1/2) {2cos²(A+B/2) - 1} +(1/4)
➩cos²(A+B/2) - cos²(A+B/2) - (1/2) + (1/4)
➩(1/4) - (1/2)
➩(1-2)/4