If(A-B)=60° , verify that
(i) Cos(A-B)= CosACosB+SinASinB
(ii) Sin(A-B)= SinACosB - CosASinB
Answers
Answered by
40
Let A be 90 and B be 30
(A-B)=90-30=60°..
(i)
Cos(A-B)=CosACosB+SinASinB
=Cos60°=1/2
Cos90.Cos30+Sin90.Sin30
=0×√3/2+1×1/2
=0+1/2
=1/2
Hence..LHS=RHS
(ii)
Sin(A-B)=SinA.CosB-CosA.SinB
Sin60°=√3/2
=Sin90.Cos30-Cos90.Sin30°
=1×√3/2-0×1/2
=√3/2-0
=√3/2
Hence...LHS=RHS
Therefore,proved!
hope it helps...
cheers! (:
(A-B)=90-30=60°..
(i)
Cos(A-B)=CosACosB+SinASinB
=Cos60°=1/2
Cos90.Cos30+Sin90.Sin30
=0×√3/2+1×1/2
=0+1/2
=1/2
Hence..LHS=RHS
(ii)
Sin(A-B)=SinA.CosB-CosA.SinB
Sin60°=√3/2
=Sin90.Cos30-Cos90.Sin30°
=1×√3/2-0×1/2
=√3/2-0
=√3/2
Hence...LHS=RHS
Therefore,proved!
hope it helps...
cheers! (:
Answered by
27
HELLO DEAR,
HELLO DEAR,
it is possible when we take
the A=90 and B=30
given that:-
A-B=60
90-30=60
60=60
now
(1) cos (A-B)=COS60°=1/2------------(1)
=> CosACosB+SinASinB
=>cos90cos30+sin90sin30
=> 0 × √3/2 + 1 ×1/2
=0+1/2=2----------(2)
from(1)and(2)
Cos(A-B)= CosACosB+SinASinB
(2) sin(A-B) = sin60° = √3/2----------(3)
=> SinACosB - CosASinB
=>sin90° cos30° - cos90° sin30°
=>1×√3/2-0×1/2
=>√3/2-0
=>√3/2--------(4)
from--(3)and---(4)
we get
Sin(A-B)= SinACosB - CosASinB
I HOPE ITS HELP YOU DEAR,
THANKS
HELLO DEAR,
it is possible when we take
the A=90 and B=30
given that:-
A-B=60
90-30=60
60=60
now
(1) cos (A-B)=COS60°=1/2------------(1)
=> CosACosB+SinASinB
=>cos90cos30+sin90sin30
=> 0 × √3/2 + 1 ×1/2
=0+1/2=2----------(2)
from(1)and(2)
Cos(A-B)= CosACosB+SinASinB
(2) sin(A-B) = sin60° = √3/2----------(3)
=> SinACosB - CosASinB
=>sin90° cos30° - cos90° sin30°
=>1×√3/2-0×1/2
=>√3/2-0
=>√3/2--------(4)
from--(3)and---(4)
we get
Sin(A-B)= SinACosB - CosASinB
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions