Math, asked by Nischaykhasiya, 8 months ago

if A=B=60°verify that cos(A-B)= cos A cos B + sin A sin B

Answers

Answered by Uniquedosti00017
2

Answer:

here,

A = B = 60°

LHS,

cos(A - B) = cos( 60 -60) = cos0° = 1.

now, Rhs

cosAcosB + sinAsinB

= cos60 × cos60 + sin60× sin60

=

 (\frac{1}{2}   \times   \frac{1}{2} )  +  ( \frac{ \sqrt{3} }{2}   \times  \frac{ \sqrt{3} }{2} ) \\  =  \frac{1}{4}   +  \frac{3}{4}  \\  =  \frac{1 + 3}{4}  \\  =  \frac{4}{4}  \\  = 1.

so,

LHS = RHS = 1.

HENCE PROVED.

Step-by-step explanation:

some trigonometric values:

cos0° = 1

cos60° = ½

sin60° = √3/2

I hope it will help you.

if it helps you then Mark as brainliest.

Similar questions