Math, asked by aftabk478, 6 months ago

if a/b=7/3 then find 5a+2b/5a-2b​

Answers

Answered by Saby123
5

Solution :

It is given that , a/b = 7/3 .

Let a = 7k and b = 3k

So;

5a = 5 × 7k = 35k

2a = 2 × 7k = 14k

.

5b = 5 × 3k = 15k

2b = 2 × 3k = 6k

( 5a + 2b)

=> 35k + 6k

=> 41k

( 5a - 2b )

=> 35k - 6k

=> 29k

Required ratio :

=> ( 5a + 2b)/( 5a - 2b)

=> 41k/29k

=> 41 : 29 .

This is the required answer.

______________________________

Additional Information :

(a + b)² = a² + 2ab + b²

(a + b)² = (a - b)² + 4ab

(a - b)² = a² - 2ab + b²

(a - b)² = (a + b)² - 4ab

a² + b² = (a + b)² - 2ab

a² + b² = (a - b)² + 2ab

2 (a² + b²) = (a + b)² + (a - b)²

4ab = (a + b)² - (a - b)²

ab = {(a + b)/2}² - {(a-b)/2}²

(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

(a + b)³ = a³ + 3a²b + 3ab² b³

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)( a² - ab + b² )

a³ + b³ = (a + b)³ - 3ab( a + b)

a³ - b³ = (a - b)( a² + ab + b²)

a³ - b³ = (a - b)³ + 3ab ( a - b )

______________________________

Answered by OfficialPk
6

 \mathsf \red{given} \\  \\  \mathsf{ \frac{a}{b}  =  \frac{7}{3} } \\  \\  \mathsf{let \:  \: a = 7k \:, \: b = 3k } \\  \\  \mathsf \red{substitute \:  \: a \: and \: b \: \:  in \:  \:  \frac{5a + 2b}{5a - 2b} } \\  \\  \mathsf{ \frac{5(7k) + 2(3k)}{5(7k)  - 2(3k)}  =  \frac{35k + 6k}{35k - 6k} } \\  \\  =  = >   \mathsf{ \frac{41k}{29k} =  \frac{41}{29}  } \\  \\   \boxed{\mathsf \red{ \therefore \: the \: ratio \: of  \: \:\frac{5a + 2b}{5a - 2b}   \: \: is \:  \:  \frac{41}{29} }}

Similar questions