if a+b=7,a³+b³=133, find a²+b²
Answers
Answered by
0
Answer:
29
Step-by-step explanation:
(a+b)^3 = 7^3
a^3 + b^3 + 3ab(a+b) = 343
133 + 3ab(a+b) = 343
3ab(a+b) = 210
3ab(7) = 210
3ab = 30
ab = 10
Now put the value of ab in the 2ab
(a+b)^2 = 7^2
a^2 + b^2 + 2ab = 49
a^2 + b^2 + (2x10) = 49
a^2 + b^2 = 29
Answered by
2
Step-by-step explanation:
Step-by-step explanation:
It is simple.
(a+b)3 = a3+b3+3ab(a+b)
343= 133 +3ab(7)
343-133= 7× 3ab
210 = 21ab
So ab = 210/21=10
So (a+b)2 = a2 +b2+ 2ab
49 =a2+b2+ 2ab
49-(2 ×10) =a2+b2
49-20 =29=a2+b2
a2+b2= 29
Similar questions
Science,
4 months ago
Math,
4 months ago
Social Sciences,
4 months ago
Math,
1 year ago
Math,
1 year ago