If a-b=7,a³-b³=133 then find i)ab ii)a²+b²
Answers
Answered by
5
Answer:
is given that,
a−b=7
let us cube on both sides, we get
(a−b)
3
=(7)
3
a
3
+b
3
−3ab(a−b)=343
133−3ab×7=343
133−21ab=343
−21ab=343−133
21ab=210
ab=−210/21
ab=−10
Step-by-step explanation:
please mark as brilliant
Answered by
4
Step-by-step explanation:
Given:-
a-b = 7 and a^3-b^3=133
To find:-
Find the following values
i)ab ii)a²+b²
Solution:-
Given that
a-b=7
a^3-b^3=133
we know that
(a-b)^3=a^3-b^3-3ab(a-b)
=>7^3=133-3ab(7)
=>343=133-21ab
=>343-133=-21ab
=>210=-21ab
=>-21 ab=210
=>ab=210/-21
=>ab=-10
I)ab=-10
now we know that
(a-b)^2 =a^2+b^2-2ab
=>7^2=a^2+b^2-2(-10)
=>49=a^2+b^2+20
=>a^2+b^2=49-20
(ii)a^2+b^2=29
Answer:-
The value of ab= -10
The value of a^2+b^2=29
Used formulae:-
- (a-b)^3=a^3-b^3-3ab(a-b)
- (a-b)^2 =a^2+b^2-2ab
Similar questions