if a+b=7,ab=6,then the value of a³+b³ find value
Answers
Answer:
hi hello bro
Step-by-step explanation:
let a^3+b^3 be x
(a+b)^3=343
(a+b)^3=a^3+b^3+3ab(a+b)
343=x+3×6(7)
343=x+126
x=217
Answer:
The value of a³ + b³ using the algebraic identity is 217;
Explanation:
Given that:
a+b=7;
ab=6;
So, In order to find the value of a³+b³, we have to apply the algebraic identity, which is:
(a + b)³ = a³ + b³ + 3ab(a + b);
So, Substitute the given values in the above algebraic identity to find the value of a³ + b³.
(a + b)³ = a³ + b³ + 3ab(a + b);
⇒ (7)³ = a³ + b³ + 3(6)(7)
⇒ 343 = a³ + b³ + 126
⇒ a³ + b³ = 343 - 126
⇒ a³ + b³ = 217;
Therefore,
The value of a³ + b³ using the algebraic identity is 217;
To learn more about algebraic identity, visit:
https://brainly.in/question/51406190
To learn more about algebraic expressions, visit:
https://brainly.in/question/16766451
#SPJ3