If a + b = 7 and ab = 12, then the value of (a^2-b^2).
Answers
Answered by
0
Given that
aa ++ b=7b=7 …….. (1)
and
ab=12ab=12 …….. (2)
We have to find the value of
a2+b2−aba2+b2−ab
From (1) ,
a=7−ba=7−b …….. (3)
From (2) & (3) , we get
(7−b)b=12(7−b)b=12
=>7b−b2=12=>7b−b2=12
=>b2−7b+12=0=>b2−7b+12=0
=>b2−3b−4b+12=0=>b2−3b−4b+12=0
=>b(b−3)−4(b−3)=0=>b(b−3)−4(b−3)=0
=>(b−3)(b−4)=0=>(b−3)(b−4)=0
=>b=3,4=>b=3,4
If b=3,a=7–3=4b=3,a=7–3=4
Therefore,a2+b2−aba2+b2−ab
=42+32−4(3)=42+32−4(3)
=16+9−12=16+9−12
=13.=13.
If b=4,a=7−4=3b=4,a=7−4=3
Therefore,
a2+b2−aba2+b2−ab
=32+42−3(4)=32+42−3(4)
=9+16−12=9+16−12
=13=13
Hence , a2+b2−ab=13.a2+b2−ab=13.
aa ++ b=7b=7 …….. (1)
and
ab=12ab=12 …….. (2)
We have to find the value of
a2+b2−aba2+b2−ab
From (1) ,
a=7−ba=7−b …….. (3)
From (2) & (3) , we get
(7−b)b=12(7−b)b=12
=>7b−b2=12=>7b−b2=12
=>b2−7b+12=0=>b2−7b+12=0
=>b2−3b−4b+12=0=>b2−3b−4b+12=0
=>b(b−3)−4(b−3)=0=>b(b−3)−4(b−3)=0
=>(b−3)(b−4)=0=>(b−3)(b−4)=0
=>b=3,4=>b=3,4
If b=3,a=7–3=4b=3,a=7–3=4
Therefore,a2+b2−aba2+b2−ab
=42+32−4(3)=42+32−4(3)
=16+9−12=16+9−12
=13.=13.
If b=4,a=7−4=3b=4,a=7−4=3
Therefore,
a2+b2−aba2+b2−ab
=32+42−3(4)=32+42−3(4)
=9+16−12=9+16−12
=13=13
Hence , a2+b2−ab=13.a2+b2−ab=13.
Answered by
0
Answer:
given
a+b=7 and ab=12
if a+b=7
a = 7-b
ab = (7-b)b
(7-b)b = 12
7b-b² = 12
b²-7b+12 = 0
b²-3b-4b+12=0
b(b-3)-4(b-3) = 0
(b-4)(b-3) = 0
b= 4,3
a = (7-b) = (7-4) or (7-3)
= 3 or 4
b=3 or 4
a = 4 or 3
a²-b² = 4²-3² or 3²-4²
=16-9 or 9-16
= 7 or -7
a²-b² = 7 or (-7)
Similar questions