Math, asked by prajwaldhonde, 10 hours ago

If a + b = 7 and ab = 6 , then a^2 + b^2 is equal to________​

Answers

Answered by Anonymous
4

Algebraic Identies

The following standard algebraic identity will be used to solve the problem:

\[\boxed{a^2 + b^2 = a^2 + b^2 + 2ab}\]

We have been given that, a + b = 7 and ab = 6. With this information, we have been asked to find out the value of a^2 + b^2.

We know that,

\[\implies \boxed{a^2 + b^2 = a^2 + b^2 + 2ab}\] \\

By substituting the given values in the above identity, we get:

\implies a^2 + b^2 = a^2  + b^2 + 2(6) \\ \\ \implies (a + b)^2 = a² + b² + 12 \\  \\ \implies  {7}^{2} = a^2 + b^2 + 12 \\  \\ \implies 49 = a^2 + b^2 + 12 \\  \\ \implies 49 - 12 =  {a}^{2} + {b}^{2} \\  \\ \implies \boxed{{a}^{2} + {b}^{2} = 37}

\rule{90mm}{2pt}

MORE TO KNOW

\boxed{\begin{array}{c}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\\frak{1.}\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\\frak{2.}\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\\frak{3.}\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\\frak{4.}\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\\frak{5.}\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\\frak{6.}\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\\frak{7.}\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\\frak{8.}\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{array}}

Answered by βαbγGυrl
2

Answer:

Using Identity (i) here = (a+b)^2 = a^2 + b^2 + 2ab

Applying it here,

(7)^2 = a^2 = b^2 + 2(6)

49 = a^2+b^2+12

49-12 = a^2+b^2

37 = a^2+b^2

Hence, we got to know that a^2+b^2 = 37.

Similar questions