If (a - b)=7 and ab =9, what is the value of (a² +b²)?
Answers
Answered by
19
Given :
- (a - b) = 7
- ab = 9
To find :
The value of (a² + b²)
Solution :
The formula we will be using is => (x - y)² = x² + y² - 2ab
According to question,
=> (a - b)² = a² + b² - 2ab
=> (7)² = a² + b² - 2 × 9
=> 49 = a² + b² - 18
=> 49 + 18 = a² + b²
.°. a² + b² = 67
Hence, the value of a² + b² is 67 respectively.
- Some algebraic formulas -
- (a - b)² = a² + b² - 2ab
- (a + b)² = a² + b² + 2ab
- (a + b)² = (a - b)² - 2ab
- (a - b)² = (a + b)² - 4ab
- a² - b² = (a + b)(a - b)
Answered by
53
(a² + b²) = 67
Given :-
- (a - b) = 7
- ab = 9
To Find :-
- The value of (a² + b²) .
Solution :-
As we know that,
(a - b)² = a² + b² - 2ab
[ Put the values ]
=> (7)² = a² + b² - 2(9)
=> 49 = a² + b² - 18
=> -(a²+b²) = -49 - 18
=> (a² + b²) = 67
Hence,
- The value of (a² + b²) is 67.
__________________
Verification :-
(a - b)² = a² + b² - 2ab
=> (7)² = 67 - 2(9)
=> 49 = 67 - 18
=> 49 = 49 .
Hence Verified !!
Similar questions