If a+b=8 ab=15 then a³+b³=
Answers
Answer:
The value of a³ + b³ is 152.
Step-by-step-explanation:
We have given that,
a + b = 8
ab = 15
We have to find the value of a³ + b³.
We know that,
( a + b )³ = a³ + 3a²b + 3ab² + b³ - - [ Algebraic identity ]
⇒ ( a + b )³ - 3a²b - 3ab² = a³ + b³
⇒ a³ + b³ = ( a + b )³ - 3a²b - 3ab²
⇒ a³ + b³ = ( a + b )³ - 3ab ( a + b )
By substituting the given values in the above equation, we get,
a³ + b³ = ( a + b )³ - 3ab ( a + b )
⇒ a³ + b³ = ( 8 )³ - 3 × 15 ( 8 )
⇒ a³ + b³ = 512 - 45 × 8
⇒ a³ + b³ = 512 - 360
⇒ a³ + b³ = 152
∴ The value of a³ + b³ is 152.
─────────────────────
Additional Information:
Some Algebraic Identities:
1. ( a + b )² = a² + 2ab + b²
2. ( a - b )² = a² - 2ab + b²
3. a² - b² = ( a + b ) ( a - b )
4. ( a + b )³ = a³ + 3a²b + 3ab² + b³
5. ( a - b )³ = a³ - 3a²b + 3ab² - b³
6. a³ + b³ = ( a + b )³ - 3ab ( a + b )
7. a³ - b³ = ( a - b )³ + 3ab ( a - b )
8. ( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ac