if a+b=8,ab=16 find a^2+b^2
Answers
Answered by
1
hey.. here is ur answer
a+b=8
a=8-b
now ab=16
(8-b)b=16
8b-b^2=16
b^2-8b+16=0
b^2-4b-4b+16=0
b(b-4)-4 (b-4)=0
(b-4)(b-4)=0
b=4,4
..a=8-b
putting the value of b
a=8-4=4
therefore. a^2+b^2=4^2+4^2
=16+16=32
a+b=8
a=8-b
now ab=16
(8-b)b=16
8b-b^2=16
b^2-8b+16=0
b^2-4b-4b+16=0
b(b-4)-4 (b-4)=0
(b-4)(b-4)=0
b=4,4
..a=8-b
putting the value of b
a=8-4=4
therefore. a^2+b^2=4^2+4^2
=16+16=32
Answered by
4
Hey,
Given : a + b = 8 ............(1)
and ab = 16 .....................(2)
We known that,
(a + b)² = a² + 2ab + b²
Now, substituting the values of (1) and (2) in the above, we get.
=> (8)²= a²+2(16)+b²
=> 64= a²+32+b²
=> 64-32=a²+b²
=> 【a²+b²= 32】 ANSWER...
HOPE IT HELPS:-))
Given : a + b = 8 ............(1)
and ab = 16 .....................(2)
We known that,
(a + b)² = a² + 2ab + b²
Now, substituting the values of (1) and (2) in the above, we get.
=> (8)²= a²+2(16)+b²
=> 64= a²+32+b²
=> 64-32=a²+b²
=> 【a²+b²= 32】 ANSWER...
HOPE IT HELPS:-))
Similar questions