If a+b=8 and a2+b2=34 find a3+b3
Answers
Answered by
4
solution
(a+b)2=a2 +b2 +2ab
(8)2= 34+2ab
64=34+2ab
64-34=2ab
30= 2ab
30÷2=ab
15=ab
(a+b)3= a3+ b3+3ab (a+b)
(8)3= a3+b3+3*15(a+b)
(8)3= a3+b3+ 45(a+b)
(8)3=a3+b3+45*8
(8)3=a3+b3+360
(8)3-360=a3+b3
512-360=a3+b3
152=a3+b3
Answered by
3
Answer:a^3+b^3= 152
Step-by-step explanation:
a + b= 8
Now, a^2 + b^2 = (a + b)^2 - 2ab
34 = 64- 2ab
-2ab =34-64
-2ab=-30
2ab=30 (both negetive cancelled)
ab=30/2
ab=15
a^3 + b^3 = (a + b)3 - 3ab (a + b)
a^3 + b^3 = 512 - 3 x ab x 8
= 512 - 360 = 152(substitute the value of ab)
a^3+b^3= 152
Similar questions
Science,
4 months ago
Social Sciences,
4 months ago
Math,
8 months ago
Math,
1 year ago
Physics,
1 year ago