Math, asked by ashishkumar348, 3 days ago

If a+b=8 and ab=12, find the value of a³+b³​

Answers

Answered by Anonymous
2

Answer:

224

solution:

a + b = 8

ab = 12

i) a + b = 8

2 + 6 = 8

ii) ab = 12

a × b = 12

2 × 6 = 12

iii)a^3 + 6^3

2^3 + 6^3

8 + 216 = 224

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

\rm \: ab = 12 \\

and

\rm \: a + b = 8 \\

On cubing both sides, we get

\rm \:  {(a + b)}^{3} =  {8}^{3} \\

\rm \:  {a}^{3} +  {b}^{3} + 3ab(a + b) = 512 \\

can be further rewritten as on substituting the values of ab and a + b,

\rm \:  {a}^{3} +  {b}^{3} + 3 \times 12 \times 8 = 512 \\

\rm \:  {a}^{3} +  {b}^{3} + 288 = 512 \\

\rm \:  {a}^{3} +  {b}^{3} = 512 - 288 \\

\rm\implies \:\boxed{ \rm{ \: {a}^{3} +  {b}^{3} = 224 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions