Math, asked by wadhwamuskan157, 5 months ago

if a- b = 8 and ab = - 12 then find a^3-b^3​

Answers

Answered by lokeshdagar273
1

Step-by-step explanation:

ANSWER

Formula,

(a−b)

3

=a

3

−b

3

−3ab(a−b)

a−b=−8,ab=−12

a

3

−b

3

=(a−b)

3

+3ab(a−b)

=(−8)

3

+3(−12)(−8)=−224

Answered by Flaunt
24

Correct Question:

if a-b=-8,ab=-12 then find the value of a³-b³

Given:

a-b=-8

ab=-12

To Find :

value of a³-b³

\huge\bold{\gray{\sf{Answer:}}}

Explanation:

Here,this identity is used :-

 \bold{\boxed{\purple{ {(a - b)}^{3} = {a}^{3}  -  {b}^{3}  - 3ab[a - b]}}}

 =  >   {(a - b)}^{3}  =  {a}^{3}  -  {b}^{3}  - 3ab(a - b)

 =  >  {( - 8)}^{3}   =  {a}^{3}  -  {b}^{3}  - 3 \times  - 12( - 8)

 =  >  {( - 8)}^{3}  =  {a}^{3}  -  {b}^{3}  - 3 \times  - 12( - 8)

 =  >  - 512 =  {a}^{3}  -  {b}^{3}  - 288

 =  >  - 512 + 288 =  {a}^{3}  -  {b}^{3}

 \bold{\boxed{  {a}^{3}  -  {b}^{3}  =  - 224}}

Other Identity related to this :

\bold{\boxed{ {(x -y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy}}

\bold{\boxed{ {x}^{3}   +   {y}^{3}  =  {x}^{3}  +  {y}^{3}   + 3xy(x + y)}}

\bold{\boxed{(x + y)(x  + z) =  {x}^{2}  + (y+ z)x + yz}}

\bold{\boxed{ {(x +y)}^{3}  =  {x}^{3}  +  {y}^{3}  +3xy[x+y]}}

Similar questions