Math, asked by mazharmatia73, 5 months ago

If a-b=8 and ab=5 then find the value of a3-b3

Answers

Answered by AestheticSoul
4

Given

  • a - b = 8
  • ab = 5

To find

  • Value of a^3 - b^3

Solution

Identity to be used -

\underline{\boxed{\sf{(a - b)^3 = a^3 - b^3 - 3ab}}}

Substitute the given values.

\sf{(8)^3 = a^3 - b^3 - 3 \times 5}

\sf{512 = a^3 - b^3 - 15}

\sf{512 + 15 = a^3 - b^3}

\sf{a^3 - b^3 = 527}

━━━━━━━━━━━

Verification

\sf{(a - b)^3 = a^3 - b^3 - 3ab}

\sf{(a - b)^3 = 527 - 3 \times 5}

\sf{(a - b)^3 = 527 - 15}

\sf{(a - b)^3 = 512}

\sf{(a - b) = 8}

Hence, verified.

━━━━━━━━━━━

Know more -

Some useful identities -

  • \sf{{(a - b)}^{2} = {a}^{2} + {b}^{2} - 2ab}

  • \sf{{(a + b)}^{2} = {a}^{2} + {b}^{2} + 2ab}

  • \sf{(a + b)^3 = a^3 + b^3 + 3ab(a + b)}

Signs are changed on the following bases -

  • (-) (-) = (+)

  • (+) (+) = (+)

  • (-) (+) = (-)

  • (+) (-) = (-)
Answered by Clαrissα
24

\sf Given \begin{cases} & \sf{a - b =8} \\ & \sf{ab = 5}  \end{cases}\\ \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To find : Value of \sf{a^3 - b^3} ?

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\pink{(a - b)^3 = a^3 - b^3 - 3ab}}}}\\ \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

:\implies\sf (8)^3 = a^3 - b^3 - 3 \times 5 \\ \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 512 = a^3 - b^3 - 15 \\ \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 512 + 15 = a^3 - b^3 \\ \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 512 + 15 = a^3 - b^3 \\ \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\frak{\purple{a^3 - b^3 = 527}}}}}\;\bigstar\\ \\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\therefore\:{\underline{\sf{The\:value\:of\:a^3-b^3\:is\: {\textsf{\textbf{527}}}.}}}

Similar questions