Math, asked by baby3419, 1 year ago

If a+b=8 and ab = 6, find the value of a3 + b3​


sneha486071: hey
sneha486071: @baby3419 i can't answer u
sneha486071: right now
baby3419: gn sister,sweet dreams
sneha486071: sorry
sneha486071: hmm
sneha486071: ok gn

Answers

Answered by amankumaraman11
12

 {(a + b)}^{2}  =  {8}^{2}  \\  {a}^{2}  +  {b}^{2}  + 2ab = 64 \\  {a}^{2}  +  {b}^{2}  = 64 - 2(6) \\ {a}^{2}  +  {b}^{2} = 64 - 12 \\ {a}^{2}  +  {b}^{2} = 52

Now,

 {a}^{3}  +  {b}^{3}  = (a + b)({a}^{2}  +  {b}^{2} - ab)  \\ \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = (8)(52 - 6) \\ \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    = 8(46) \\ \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    = 368

 <marquee> MARK BRAINLIEST

Answered by himanshu756
8

HEY MATE

a+b=8(cubing both sides)

a3+b3+3a2b+3ab2=512

a3+b3+3ab(a+b)=512

a3+b3+3*6*8=512

a3+b3+144=512

a3+b3=512-144

a3+b3=368 @ns

plz mark me follow ya

Similar questions