Math, asked by zahir79, 1 year ago

if a+b=8 and ab=6, find the values of a^3+b^3.


suhan3: a^3+b^3=368

Answers

Answered by digi18
4
a^3 +b^3 = (a + b)(a^2+b^2 - ab)

= 8( a^2 +b^2 - 6)

Now a^2 +b^2 = (a+ b)^2 - 2ab

a^2 + b^2 = (8)^2 - 2×6 = 64 - 12 = 52

= 8(52 - 6)

= 8 × 46

= 368


Thanks
Answered by Anonymous
7

hey \\ here \: is \: your \: answer \\  \\ (a  + b) ^{ 3}  = a ^{3} + b {}^{3}   + 3ab \: (a   + b ) \\  \\ (8) {}^{3}  = a {}^{3}  + b {}^{3}  + 3 \times 6(8) \\  \\  \\ 512 = a {}^{ 3}  + b {}^{3}  + 144 \\  \\ answer \: 512 - 144 = 368

hope it helps
Similar questions
Math, 1 year ago