If a + b = 9, ab = 4, find the value of a + b.
If a - b = 5, a + b2 = 49, find the value of ab.
Answers
Answered by
3
a+b=9
Squaring both the sides
=>a²+b²+2ab=81
Substituting value of 'ab' in equation
=>a²+b²+2*4=81
=>a²+b²=73
Answered by
2
Explanation:
a+b=9 ab=4
(a+b)^2=a^2+b^2+2ab
a^2+b^2=(a+b)^2-2ab
=(9)^2-2(4)
=81-8
=73
(a-b)^2=a^2+b^2-2ab
=(73)-2(4)
=65
a-b=√65
2) a-b=5, a^2+b^2=49
(a-b)^2=a^2+b^2-2ab
(5)^2=(49)-2(ab)
25-49=(-2ab)
12=ab
Similar questions