Math, asked by sushantaroy391, 9 months ago

If a + b = 9 and ab = 10, find the value of a2 + b2.​

Answers

Answered by Mysterioushine
15

\huge\bold\star\underline\pink{AnsWer:}

a + b  = 9 -  - eq(1) \:  \\  \\ ab = 10 -  - eq(2) \\  \\ squaring \: on \: both \: sides \: in \: eq(1) \\  \\  =  > (a + b) {}^{2}  = 9 {}^{2}  \\  \\  =  >  {a}^{2}  +  {b}^{2}  + 2ab = 81 \\  \\  =  >  {a}^{2}  + b {}^{2}  + 2(10) = 81 \:  \: (from \: eq(2)) \\  \\  =  >  {a}^{2}  +  {b}^{2}  = 81 - 20 \\  \\  =  >  {a}^{2}  +  {b}^{2}  = 61

\large\text{\therefore{a^2+b^2\:=\:61}}

Answered by iTzShInNy
33

  \\  \large\mathfrak {\underline \purple{ \:  \:  \:  \:  \:  \:  \:  \: \: concept - \:  \:  \:  \:  \:  \:  \:  \:   }} \\  \\  \\  \sf \: here \: in \: the \: query ,\: the \: question \: said \: that \\  \sf \: the \: value \: of \: \blue {a + b \: is \: 9 }\: and \: the \: value \: of \: \blue{ ab \: is \: 10} \\  \sf \: and \: we \: have \: to \: find \: the \: value \: of \: \red { {a}^{2}  +  {b}^{2} }.  \\  \sf \: by \: applying \: the \: formula \:   \bigstar\boxed{ \bf \: (a + b) {}^{2}  =  {a}^{2} +  {b}^{2} + 2ab  } \bigstar\\  \\  \\

  \\ \large\mathfrak {\underline \purple{ \:  \:  \:  \:  \:  \:  \:  \: solution \:  \:  \:  \:  \:  \:  \:  \:   }} \\  \\  \\  \sf➲(a + b) {}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\ \\  \sf ➲(9) {}^{2}  =  {a}^{2}  +  {b}^{2}  + 2 \times 10 \\  \\  \sf➲81 =  {a}^{2}  +  {b}^{2}  + 20 \\  \\  \sf➲81 - 20 =  {a}^{2}  +  {b}^{2}    \\  \\  \sf➲61 =  {a}^{2}  +  {b}^{2}  \\  \\  \sf➲ {a}^{2}  +  {b}^{2}  = { \boxed{\boxed  { \tt  \red6 \pink1}}} \\  \\  \\  \\

 \sf \therefore \: the \: value \: of \:  {a}^{2}  +  {b}^{2}  \: is \:  \red{61}

 \\  \\

 \\  \bigstar{ \underline{ \underline  \pink{  \sf★@iTzShInNy☆}}} \bigstar \\  \\

Similar questions