Math, asked by tanishajoshi05, 7 months ago

if a+b=9 and ab=18 find
(a-b)​

Answers

Answered by shinchan142
9

\huge\mathtt{Hello!}

a + b = 9 \:  \:  \:  \:  \: ab = 18

 {(a + b)}^{2}  =  {9}^{2}

 {a}^{2}  +  {b}^{2}  + 2ab = 81

 {a}^{2}  +  {b}^{2}  = 81 - 2(18)

 {a}^{2}  +  {b}^{2}  = 45

 {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

 = 45 - 36

 = 9

 {(a - b)}^{2}  = 9

a - b = 3

Answered by ParthPandey12
10

Question: If a+b=9 and ab=18 find  (a-b)​

Solution:

Given,

(a+b)=9 and ab=18

To find,

(a-b) = ?

Process :-

  (a+b)^{2} =(9)^{2}

a^{2} + b^{2} + 2ab = 81

a^{2} +b^{2} + 2(18) = 81

a^{2} + b^{2} = 81 - 36

a^{2} + b^{2} = 45

Now,

(a-b)^{2} = a^{2} +b^{2} -2ab  =45- 2(18)=45-36=9

Since, (a-b)^{2}  = 9

Therefore, (a-b) =±\sqrt{9}=±3

Hence, (a-b) =±3

Remarks:

  • THE ANSWER IS 100% CORRECT.
  • MARK IT AS BRAINLIEST IF YOUR DOUBT IS CLEARED.
  • HAVE A PHENOMENAL FUTURE!
  • JAI HIND

Similar questions