Math, asked by ria60, 1 year ago

if A+B =90˙ prove that√ tan A tan B + tan A cot B/ sin A secB - sin²B/cos²A = tan A

Attachments:

Answers

Answered by rohitkumargupta
28
HELLO DEAR,

given that:-

A+B=90°

A=( 90° - B)---------(1)
 \sqrt{ \frac{ \tan( \alpha )  \tan( \beta )  +  \tan( \alpha )  \cot( \beta ) }{ \sin( \alpha )  \sec( \beta )  } -  \frac{ { \sin }^{2}  \alpha }{ \cos ^{2}  \beta  }  }  \\  =  >  \sqrt{ \frac{ \tan( 90 -  \beta  )  \tan( \beta )  +  \tan( 9 0 -  \beta  )  \cot( \beta ) }{ \sin( 90 -  \beta  )  \sec( \beta )  } -  \frac{ { \sin }^{2}  (90 -  \beta ) }{ \cos ^{2}  \beta  }  }...............using(1) \\  =  > \sqrt{ \frac{ \cot(  \beta  )  \tan( \beta )  +   \cot( \beta )  \cot( \beta ) }{  \cos( \beta )   \sec( \beta )  } -  \frac{ { cos }^{2}   \beta  }{ \cos ^{2}  \beta  }  } \\  =  >  \sqrt{ \frac{ \frac{1}{ \tan( \beta ) } \times  \tan( \beta )  +  \cot ^{2}  \beta }{ \frac{1}{ \sec( \beta )  } \times  \sec( \beta )   } - 1 }  \\  =  >  \sqrt{1 +  \cot^{2}  \beta  - 1 }  \\  >  \sqrt{ { \cot   }^{2} \beta  }  =  \cot( \beta )  \\  =  >  \cot(90 -  \alpha )......using(1)  \\  =  >  \tan( \alpha )
I \:  HOPE \:  ITS \:  HELP  \: YOU  \: DEAR,<br /> \\  THANKS
☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️

ria60: ^_^
rohitkumargupta: hehe
rohitkumargupta: ☺️☺️☺️
ria60: Where u stay
rohitkumargupta: means
ria60: tum kaha rehete ho
rohitkumargupta: up
ayushgupta113: grt
ayushgupta113: well explained
ayushgupta113: superb
Similar questions