If A + B = 90, prove that √tana tanB + tana cotB/sin A secB= secA.
Answers
Answered by
16
HELLO DEAR,
GIVEN:- A + B = 90°
A = 90° - B----------( 1 )
now,
HENCE, L.H.S = R.H.S
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by
5
Hi ,
**************************************
It is given that ,
A + B = 90°
A = 90 - B
tan A = tan ( 90 - B )
= cotB ---( 1 )
SinA = sin ( 90 - B ))
= cos B ---( 2 )
sec B = 1/cosB ---( 3 )
1 + cot² B = cosec² B
*******************************************
LHS = √[(tanAtanB+tanAtanB)/(sinAsecB)]
= √[(cotBtanB+cotBcotB )/(cosB×1/cosB)]
= √[(1 + cot²B )
=√cosec²B
= cosec B
= cosec ( 90 - A )
= sec A
= RHS
I hope this helps you.
: )
**************************************
It is given that ,
A + B = 90°
A = 90 - B
tan A = tan ( 90 - B )
= cotB ---( 1 )
SinA = sin ( 90 - B ))
= cos B ---( 2 )
sec B = 1/cosB ---( 3 )
1 + cot² B = cosec² B
*******************************************
LHS = √[(tanAtanB+tanAtanB)/(sinAsecB)]
= √[(cotBtanB+cotBcotB )/(cosB×1/cosB)]
= √[(1 + cot²B )
=√cosec²B
= cosec B
= cosec ( 90 - A )
= sec A
= RHS
I hope this helps you.
: )
Similar questions