Math, asked by suranTaVtvais, 1 year ago

If A+B=90 prove that under root tanA tanB+cotA tanB/cosA cscB-sec^2A/csc^2B=cotA

Answers

Answered by sureshbhat47
1
tanA tanB + cot A tan B ./ cos A csc B =tan B( tan A + cot A) /cosA csc B

tan A + cot A =  1 / sin A cos A  ,   tan B  / cos A csc B = sin 2 B /cosA cosB

since  A + B =  90,   cos B = sin A   Hence,  LHS  becomes

sin 2 B / sin 2A cos 2 A  -  sin 2  B/ cos 2 A

now  sin 2  B =  cos  2  A,    I  / sin 2 A  -  1  =  cos 2  A  /  sin 2 A
 
taking  square  root,  LHS =  cot A  =  RHS
Similar questions