Math, asked by palakbhatia2312, 10 months ago

If A+B =90", then prove that
tan tartanA cotB
in B
tanA
cosa​

Answers

Answered by 12100kb
0

Answer:

A + B = 90°       =>   A = 90 - B

So Tan A = Cot (90 - A) = Cot B

So Tan B = Cot (90 - B) = Cot A

SecB = Cosec (90 -B) = Cosec A

CosA = Sin (90 -A) = Sin B

substitute these in the LHS,

TanA\ TanB+\frac{TanA\ CotB}{SinA \ SecB}-\frac{Sin^2B}{Cos^2A}\\\\=TanA\ CotA + \frac{TanA\ TanA}{SinA\ CosecA}-\frac{Sin^2B}{Sin^2B}\\\\=1+Tan^2A - 1=Tan^2A

Similar questions