Math, asked by hardikaajara, 1 year ago

If A+B=90 then the simplest form of \sqrt{sinA secB - sinA cosB} is ?​

Answers

Answered by rishu6845
3

Answer:

SinB

Step-by-step explanation:

Given---> A + B = 90°

To find---> √{ SinA SecB - SinA CosB )

Solution---> ATQ, A + B = 90°

Now,

SinA SecB - SinA CosB

= SinA ( SecB - CosB )

= SinA { ( 1 / CosB ) - CosB }

= SinA { ( 1 - Cos²B ) / CosB }

Putting A = 90° - B , and using Sin²θ = 1 - Cos²θ , we get,

= Sin( 90° - B ) × Sin²B / CosB

we know that Sin ( 90° - θ ) = Cosθ , we get,

= CosB × Sin²B / CosB

CosB is cancel out from numerator and denominator and we get

= Sin²B

Now returning to original problem

√{SinA SecB - SinA CosB ) = √Sin²B

= SinB

Answered by Aɾꜱɦ
18

<font color =“orange”>

{ \huge \bf{ \mid{ \overline{ \underline{Answer}}} \mid}}

sinB

 \rule{300}{2}

#answerwithquality #bal

<marquee scrollamount=500>follow me </marquee>

<body bgcolor= “purple” ><fontcolor=“white”>

Similar questions