If A + B = 90°, prove that
tan A tan B+tan A cot B sin'B
sin A sec B
= tan A
cosA
Answers
Answered by
0
Answer:
tan
2
A
A + B = 90° => A = 90 - B
So Tan A = Cot (90 - A) = Cot B
So Tan B = Cot (90 - B) = Cot A
SecB = Cosec (90 -B) = Cosec A
CosA = Sin (90 -A) = Sin B
substitute these in the LHS,
TanA\ TanB+\frac{TanA\ CotB}{SinA \ SecB}-\frac{Sin^2B}{Cos^2A}\\\\=TanA\ CotA + \frac{TanA\ TanA}{SinA\ CosecA}-\frac{Sin^2B}{Sin^2B}\\\\=1+Tan^2A - 1=Tan^2A
Similar questions