If A+B= 90° then show that 1+ cot squar A = sec square B
Answers
Answered by
3
A + B= 90
==> A = B-90
1 + cot²A
= cosec²A (using identity cosec²A - cot²A = 1)
= cosec² (90-B)
= sec²B (using identity cosec(90-A) = secA)
Hence proved. :-)
==> A = B-90
1 + cot²A
= cosec²A (using identity cosec²A - cot²A = 1)
= cosec² (90-B)
= sec²B (using identity cosec(90-A) = secA)
Hence proved. :-)
Answered by
5
Given,
A+B=90→B=90-A
To prove that,
1+cot²A=sec²B
We know that,
cosec²A-cot²A=1
→cosec²A=1+cot²A.............[1]
Also,
cosecA=sec(90-A)
→cosecA=secB..................[2]
Using [2] in [1],
1+cot²A=sec²B
Hence,proved
•Some basic trigonometric identities,
sin²x+cos²x=1
sec²x-tan²x=1
cosec²x-cot²x=1
•Trigonometric relations:
sin x=cos(90-x)
tan x=cot(90-x)
sec x=cosec(90-x)
•Trignometric functions:
sin x=1/cosec x
cos x=1/sec x
tan x=1/cot x
Similar questions