Math, asked by BrainlyHelper, 1 year ago

If A + B = 90°, then \frac{tan AtanB+tanAtanB}{sinAsecB}-\frac{sin^{2}B }{cos^{2}A } is equal to
(a)cot^{2}A
(b)cot^{2}B
(c)-tan^{2}A
(d)-cot^{2}A

Answers

Answered by nikitasingh79
4

SOLUTION :  

The correct option is (b) : cot² B

Given : A + B = 90°  

B = 90° - A …………. (1)

A = 90° - B ………….(2)

The value of : [tan A tan B + tan A cot B / sin A sec B ]  - sin²B /cos²A

=[ tan A × tan (90° - A) + tan A cot(90° - A) / sinA sec(90° - A) ] - sin² (90° - A) / cos² A

[From eq 1]

= tan A cot A + tan A tan A  / sin A cosec A ]  - cos²A /cos²A

[ tan (90° - θ) = cot θ, cot (90° - θ) = tan θ, sec (90° - θ) = cosec θ]

=  1 + tan²A / 1 - 1

[ tan θ cot θ = 1 ,sin θ cosec θ = 1]  

= 1 + tan²A  - 1

=  tan²A  

= tan² (90° - B)      [ from eq 2]

= cot² B             [tan (90° - θ) = cot θ]

Hence, the value of : [tan A tan B + tan A cot B / sin A sec B ]  - sin²B /cos²A is cot² B .

HOPE THIS ANSWER WILL HELP YOU…

Answered by shikha2019
3
the correct answer is option (b)
Similar questions