If a-b, a and a+b are the zeroes of the polynomial x^3-3x^2+x+1 the value of (a+b) is
Answers
Answered by
18
Given:
a-b, a and a+b are the zeroes of the polynomial x^3-3x^2+x+1
To Find:
The value of (a+b)
Solution:
polynomial f(x) = x³ - 3x² + x + 1 .
Here a = 1 , b = -3 , c = 1 , d = 1 .
Let α = ( a - b ) , β = a and γ = ( a + b ) .
As we know,
α + β + γ = -b/a .
⇒ ( a - b ) + a + ( a - b ) = -(-3)/1 .
⇒ 3a = 3 .
⇒ a = 3/3 .
∴ a = 1 .
And,
αβ + βγ + γα = c/a .
⇒ a( a - b ) + a( a + b ) + ( a + b )( a - b ) = 1/1 .
⇒ a² - ab + a² + ab + a² - b² = 1 .
⇒ 3a² - b² = 1 .
⇒ ( 3 × 1² ) - b² = 1 . { ∵ a = 1 }
⇒ 3 - b² = 1 .
⇒ b² = 3 - 1 .
⇒ b² = 2 .
∴ b = ±√2 .
As a = 1 and b = ±√2 .
( a + b ) = ( 1 ±√2 )
Answered by
16
- If ax³+bx²+cx+d is a cubic polynomial then sum of roots = -b/a
a-b+a+a+b = 3
3a = 3
a = 1
- Product of roots = -d/a
(a-b)a(a+b) = -1
1-b² = -1
b² = 2
b = + or -√2
- The required value a + b = 1 + √2 or 1 - √2
Hope it helps
#Dasanand
#Ra1
Similar questions