if a-b,a and a+b are zeroes of the polynomial x^3-3x^2+x+1,the value of (a+b) is
Answers
Answered by
1
The zeroes of the polynomial are (a+b),a, (a-b)
Let α=a-b
β=a
γ=a+b
α+β+γ=-x² coefficient/x³ coefficient
a-b+a+a+b=-3/1
3a=-3
a=-3/3
a= -1
αβγ= -constant/x³ coefficient
(a-b)(a)(a+b)=-1/1
(a²-b²)(a)= -1
[(-1)²-b²](-1)=-1
(1-b²)= -1/-1
1-b²=1
1-1=b²
b²=0
b=√0=0
Therefore, a=-1 and b=0
Hope it helps
Let α=a-b
β=a
γ=a+b
α+β+γ=-x² coefficient/x³ coefficient
a-b+a+a+b=-3/1
3a=-3
a=-3/3
a= -1
αβγ= -constant/x³ coefficient
(a-b)(a)(a+b)=-1/1
(a²-b²)(a)= -1
[(-1)²-b²](-1)=-1
(1-b²)= -1/-1
1-b²=1
1-1=b²
b²=0
b=√0=0
Therefore, a=-1 and b=0
Hope it helps
Answered by
0
ᴛʜᴇ ᴢᴇʀᴏᴇs ᴏғ ᴛʜᴇ ᴘᴏʟʏɴᴏᴍɪᴀʟ ᴀʀᴇ (ᴀ+ʙ),ᴀ, (ᴀ-ʙ)
ʟᴇᴛ α=ᴀ-ʙ
β=ᴀ
γ=ᴀ+ʙ
α+β+γ=-x² ᴄᴏᴇғғɪᴄɪᴇɴᴛ/x³ ᴄᴏᴇғғɪᴄɪᴇɴᴛ
ᴀ-ʙ+ᴀ+ᴀ+ʙ=-3/1
3ᴀ=-3
ᴀ=-3/3
ᴀ= -1
αβγ= -ᴄᴏɴsᴛᴀɴᴛ/x³ ᴄᴏᴇғғɪᴄɪᴇɴᴛ
(ᴀ-ʙ)(ᴀ)(ᴀ+ʙ)=-1/1
(ᴀ²-ʙ²)(ᴀ)= -1
[(-1)²-ʙ²](-1)=-1
(1-ʙ²)= -1/-1
1-ʙ²=1
1-1=ʙ²
ʙ²=0
ʙ=√0=0
ᴛʜᴇʀᴇғᴏʀᴇ, ᴀ=-1 ᴀɴᴅ ʙ=0
ʜᴏᴘᴇ ɪᴛ ʜᴇʟᴘs
ʟᴇᴛ α=ᴀ-ʙ
β=ᴀ
γ=ᴀ+ʙ
α+β+γ=-x² ᴄᴏᴇғғɪᴄɪᴇɴᴛ/x³ ᴄᴏᴇғғɪᴄɪᴇɴᴛ
ᴀ-ʙ+ᴀ+ᴀ+ʙ=-3/1
3ᴀ=-3
ᴀ=-3/3
ᴀ= -1
αβγ= -ᴄᴏɴsᴛᴀɴᴛ/x³ ᴄᴏᴇғғɪᴄɪᴇɴᴛ
(ᴀ-ʙ)(ᴀ)(ᴀ+ʙ)=-1/1
(ᴀ²-ʙ²)(ᴀ)= -1
[(-1)²-ʙ²](-1)=-1
(1-ʙ²)= -1/-1
1-ʙ²=1
1-1=ʙ²
ʙ²=0
ʙ=√0=0
ᴛʜᴇʀᴇғᴏʀᴇ, ᴀ=-1 ᴀɴᴅ ʙ=0
ʜᴏᴘᴇ ɪᴛ ʜᴇʟᴘs
Similar questions