Physics, asked by ani143, 1 year ago

if |a+b|/|a-b|=1, then angle between a and b is???

Answers

Answered by pulakmath007
2

The angle between   \vec{a} and   \vec{b} is 90°

Correct question : If \dfrac{  | \vec{a} +  \vec{b}| }{ | \vec{a}  -   \vec{b}|}  = 1 then angle between   \vec{a} and   \vec{b} is

Given :

\dfrac{  | \vec{a} +  \vec{b}| }{ | \vec{a}  -   \vec{b}|}  = 1

To find :

The angle between   \vec{a} and   \vec{b}

Solution :

Step 1 of 2 :

Write down the given equation

Here the given equation is

\dfrac{  | \vec{a} +  \vec{b}| }{ | \vec{a}  -   \vec{b}|}  = 1

Step 2 of 2 :

Find the angle

\dfrac{  | \vec{a} +  \vec{b}| }{ | \vec{a}  -   \vec{b}|}  = 1

\implies | \vec{a} +  \vec{b}|  =  | \vec{a}  -   \vec{b}|

{ \implies }    {| \vec{a} +  \vec{b}|}^{2}   =  {| \vec{a}  -   \vec{b}| }^{2}

{ \implies }(\vec{a} +  \vec{b}).(\vec{a} +  \vec{b}) = (\vec{a}  -  \vec{b}).(\vec{a}  - \vec{b})

 \implies (\vec{a}. \vec{a}+ \vec{a}. \vec{b} +  \vec{b}. \vec{a} +\vec{b}. \vec{b} )=(\vec{a}. \vec{a} -  \vec{a}. \vec{b}  -   \vec{b}. \vec{a} +\vec{b}. \vec{b} )

 \implies 2 \vec{a}. \vec{b} +  2\vec{b}. \vec{a}  = 0

 \implies 4 \vec{a}. \vec{b}   = 0\:  \:  \: \bigg[ \:  \because \:\vec{a}. \vec{b}  = \vec{b}. \vec{a} \bigg]

\implies  \vec{a}. \vec{b}   = 0

So   \vec{a} and   \vec{b} are perpendicular to each other

Hence angle between   \vec{a} and   \vec{b} is 90°

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If two vectors are perpendicular to each other then which of these is zero

(a) scalar product or dot product (b) vector...

https://brainly.in/question/31020619

2. two vectors of magnitude 4 u and 3 u are such that their scalar product is zero. Find their resultant.

https://brainly.in/question/30302455

#SPJ3

Similar questions