Math, asked by KATHIRVEL001, 1 year ago

if a+b/a-b and a cube-b cube/a cube +b cube are two rational expression then their product is

Answers

Answered by allysia
3

 \frac{(a + b)}{(a - b)}  \times  \frac{ {a}^{3} -  {b}^{3}  }{ {a}^{3}  +  {b}^{3} }


as a^3 - b^3 = (a-b)(a^2+ab+b^2)
a^3 +b^3 = (a+b)(a^2-ab+b^2)

Use those two identities
and you'll get
 \frac{(a + b)}{(a - b)}  \times  \frac{ {a}^{3} -  {b}^{3}  }{ {a}^{3}  +  {b}^{3} }  \\  \frac{(a + b)}{(a - b)}  \times   \frac{(a + b)( {a}^{2}  + ab +  {b}^{2}) }{(a - b)( {a}^{2}  - ab +  {b}^{2} )}  \\   \\ =     \frac{( {a}^{2}  + ab +  {b}^{2}) }{( {a}^{2}  - ab +  {b}^{2} )}  \\
Similar questions