Physics, asked by seharb7799, 5 months ago

if |A+B| = |A-B| then angle between these vectors is?

Answers

Answered by ayushisagar1000
1

Answer:

|A+B| = |A-B|

Square both sides:

|A+B|^2 = |A-B|^2

The magnitude of a vector V is the square root of the dot product with itself, i.e.

|V| = sqrt(V*V), so:

(A+B)*(A+B) = (A-B)*(A-B)

A*A + 2A*B + B*B = A*A - 2A*B + B*B

or 2A*B = -2A*B

Thus, A*B = 0, making the angle between them 90 degrees.

Answered by Ekaro
13

Answer :

Given :

\dag\sf\:|\overrightarrow{A}+\overrightarrow{B}|=|\overrightarrow{A}-\overrightarrow{B}|

To Find :

Angle between both vectors.

Solution :

★ As per parallelogram law of vector addition, magnitude of resultant vector R of two vectors A and B inclined at an angle θ is given by

\sf:\implies\:|\overrightarrow{A}+\overrightarrow{B}|=\sqrt{A^2+B^2+2ABcos\theta}

Formula of vector subtraction :

\sf:\implies\:|\overrightarrow{A}-\overrightarrow{B}|=\sqrt{A^2+B^2-2ABcos\theta}

ATQ,

:\implies\sf\:|\overrightarrow{A}+\overrightarrow{B}|=|\overrightarrow{A}-\overrightarrow{B}|

\sf:\implies\:\sqrt{A^2+B^2+2ABcos\theta}=\sqrt{A^2+B^2-2ABcos\theta}

\sf:\implies\:A^2+B^2+2ABcos\theta=A^2+B^2-2ABcos\theta

:\implies\sf\:4ABcos\theta=0

:\implies\sf\:cos\theta=0

:\implies\:\underline{\boxed{\bf{\purple{\theta=90^{\circ}}}}}

Similar questions