If (a-b) and ab are 6 and 40 find a2+b2 and (a+b)2
Answers
Answered by
1
Answer:
(a-b)=6
ab=40
(square both side)
(a-b)^2=6^2
a^2+b^2-2ab=36
a^2+b^2-2*40=36
a^2+b^2-80=36
a^2+b^2=36+80
a^2+b^2=116
(a+b)^2=a^2+b^2+2ab
(a+b)^2=116+2*40
(a+b)^2=116+80
(a+b)^2=196
Similar questions