Math, asked by skupadhyay9519, 7 months ago

if a, b,and c are in AP then prove that ab+bc/ca,bc+ac/ab,ab+ac/bc are also in AP​

Answers

Answered by Anonymous
7

Correct question:

\sf{If \ a, \ b, \ c \ are \ in \ A.P. \ then \ prove \ that}

\sf{\dfrac{ab+ac}{bc}, \ \dfrac{ab+bc}{ac}, \ \dfrac{bc+ac}{ab} \ are \ also \ in \ A.P.}

____________________________________

Answer:

Given:

\sf{\leadsto{a, \ b \ and \ c \ are \ in \ A.P.}}

To prove:

\sf{\dfrac{ab+ac}{bc}, \ \dfrac{ab+bc}{ac}, \ \dfrac{bc+ac}{ab} \ are \ also \ in \ A.P.}

Proof:

\sf{Note: \ (If \ terms \ are \ in \ A.P.)}

\boxed{\sf{2\times \ t_{2}=t_{1}+t_{3}}}

\sf{If \ a, \ b, \ c \ are \ in \ A.P., \ we \ can \ say}

\boxed{\sf{2b=a+c...(1)}}

\sf{\longmapsto{t_{1}=\dfrac{ab+ac}{bc}=\dfrac{a(b+c)}{bc}}}

\sf{Multiply \ numerator \ and \ denominator \ by \ a, \ we \ get}

\sf{t_{1}=\dfrac{a^{2}(b+c)}{abc}}

\sf{\longmapsto{t_{2}=\dfrac{ab+bc}{ac}=\dfrac{b(a+c)}{ac}}}

\sf{Multiply \ numerator \ and \ denominator \ by \ b, \ we \ get}

\sf{t_{2}=\dfrac{b^{2}(a+c)}{abc}}

\sf{\longmapsto{t_{3}=\dfrac{bc+ac}{ab}=\dfrac{c(a+b)}{ab}}}

\sf{Multiply \ numerator \ and \ denominator \ by \ c, \ we \ get}

\sf{t_{3}=\dfrac{c^{2}(a+b)}{abc}}

\sf{In \ t_{1}, \ t_{2} \ and \ t_{3} \ \dfrac{1}{abc} \ is}

\sf{common, \ hence \ we \ can \ eliminate \ it}

\sf{\therefore{t_{1}=a^{2}(b+c),}}

\sf{t_{2}=b^{2}(a+c),}

\sf{t_{3}=c^{2}(a+b)}

\sf{We \ can \ say, \ t_{1}, \ t_{2}, \ t_{3} \ are \ in \ A.P.}

\sf{if \ 2\times \ t_{2}=t_{1}+t_{3}}

\sf{R.H.S.=a^{2}(b+c)+c^{2}(a+b)}

\sf{=a^{2}b+a^{2}c+c^{2}a+c^{2}b}

\sf{=a^{2}c+c^{2}a+a^{2}b+c^{2}b}

\sf{=ac(a+c)+b(a^{2}+c^{2})}

\sf{=ac(a+c)+b[(a+c)(a+c)-2ac}

\sf{Substitute \ a+c=2b \ from \ equation(1), \ we \ get}

\sf{=2abc+b[2b(a+c)-2ac]}

\sf{=2abc+2b^{2}(a+c)-2abc}

\sf{=2b^{2}(a+c)...(2)}

\sf{L.H.S.=2[b^{2}(a+c)}

\sf{=2b^{2}(a+c)...(3)}

\sf{...from \ (2) \ and \ (3), \ we \ get}

\sf{L.H.S.=R.H.S.}

\sf{Hence, \ proved.}

\sf\purple{\tt{\dfrac{ab+ac}{bc}, \ \dfrac{ab+bc}{ac}, \ \dfrac{bc+ac}{ab} \ are \ also \ in \ A.P.}}

Similar questions