Math, asked by aruntry99, 5 months ago

if a,b and c are in ratio 2:3:4 and a+b+c=120 find the value of c?​

Answers

Answered by shlokatomar
3

Answer:

c = 53.33 (approx.)

Step-by-step explanation:

It is given that:

  • a : b : c = 2 : 3 : 4
  • a + b + c = 120

Taking the unknown quantity as x,

a : b : c = 2x : 3x : 4x

So,

  • a = 2x
  • b = 3x
  • c = 4x

Now, let's substitute these values in the 2nd equation given.

a + b + c = 120

2x + 3x + 4x = 120

⇒ 9x = 120

x = 120/9

Hence,

  • a = 2x = 120/9 * 2 = 240/9 = 26.67 (approx.)
  • b = 120/9 * 3 = 40
  • c = 120/9 * 4 = 53.33 (approx.)

Hope it helps!

Answered by brainlyofficial11
2

Given :-

  • a, b and c are in ratio 2:3:4

To Find :-

  • a + b + c = 120

Solution :-

a, b and c are in ratio 2:3:4

let a,b and c are 2x , 3x and 4x respectively

and it is given that,

a + b + c = 120

 \bold{:  \implies 2x + 3x + 4x = 120} \\  \\  \bold{: \implies 9x = 120 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{: \implies x =  \cancel  \frac{120}{9}  }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \bold{:  \implies  x = \frac{40}{3} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, common multiple of a,b and c , x = 40/3

then,

c = 4x

 \bold{: \implies c = 4 \times  \frac{40}{3}  } \\  \\  \bold{: \implies   \frac{160}{3}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

hence, value of c is 160/3 or 53.33..

Similar questions