Math, asked by kachhadiyabhavya, 4 days ago

If A, B and C are interior angles of a triangle ABC, then show that sin²(A/2)+ sin² (B+C/2)=1.



 {sin}^{2} ( \frac{a}{2} ) + {sin}^{2} ( \frac{b + c}{2} ) = 1

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that, A, B and C are interior angles of a triangle ABC.

So, using angle sum property, we get

\rm \: A + B + C = 180 \degree \\

\rm \:B + C = 180 \degree - A  \\

\rm \: \frac{B + C}{2} =  \frac{180 \degree - A}{2}    \\

\rm\implies \:\rm \: \frac{B + C}{2} = 90 \degree -  \frac{A}{2}\\

Now, Consider

\rm \:  {sin}^{2}\dfrac{A}{2} \:  +  \:  {sin}^{2}\bigg(\dfrac{B + C}{2} \bigg)  \\

\rm \:  =  \:  {sin}^{2}\dfrac{A}{2} \:  +  \:  {sin}^{2}\bigg(90 \degree -  \frac{A}{2} \bigg)  \\

We know,

\boxed{\rm{  \:sin(90 \degree - x) = cosx \: }} \\

So, using this identity, we get

\rm \:  =  \:  {sin}^{2}\dfrac{A}{2} \:  +  \:  {cos}^{2} \frac{A}{2}  \\

\rm \:  =  \: 1 \\

Hence,

\rm\implies \:\boxed{\rm{  \:\rm \:  {sin}^{2}\dfrac{A}{2} \:  +  \:  {sin}^{2}\bigg(\dfrac{B + C}{2} \bigg) = 1  \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 }\\ \\  \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions