If A, B and C are interior angles of ∆ABC, then show that : tan(angle A+Angle B/2)=cot angleC/2.
urgent!!!!!!!
Answers
Answered by
18
Hi there :)
Look at the attachment.
Thanks ♥️
Look at the attachment.
Thanks ♥️
Attachments:
Answered by
16
⭐⭐⭐⭐⭐ ANSWER ⭐⭐⭐⭐⭐
We know that the angle sum property of a triangle is always equals to 180°.
Therefore,
L. H. S.
<A + <B +<C = 180°
=> <A+<B = 180°-<C
Now, tan {(<A+<B)/2}
= tan {(180°-C)/2}
= tan { 90°-C/2 }
= cot C/2 [Since, tan(90°-theta) = cot theta]
= R. H. S.
Thus, L. H. S. = R. H. S. (PROVED)
==================================
⭐⭐⭐ ALWAYS BE BRAINLY ⭐⭐⭐
==================================
We know that the angle sum property of a triangle is always equals to 180°.
Therefore,
L. H. S.
<A + <B +<C = 180°
=> <A+<B = 180°-<C
Now, tan {(<A+<B)/2}
= tan {(180°-C)/2}
= tan { 90°-C/2 }
= cot C/2 [Since, tan(90°-theta) = cot theta]
= R. H. S.
Thus, L. H. S. = R. H. S. (PROVED)
==================================
⭐⭐⭐ ALWAYS BE BRAINLY ⭐⭐⭐
==================================
Similar questions