If a,b and c are non zero integers and a+b+c=0. PT a²/bc + b²/ca + c²/ab = 3
Answers
Answered by
0
Given,
a+b+c=0 and a, b,c are non zero integers.
R.T.P: a²/bc + b²/ca + c²/ab = 3
consider the L.H.S part of the equation,
a²/bc + b²/ca + c²/ab
=a³+b³+c³/abc........(1), we will come back to this part later...
We know that,
a³+b³+c³=(a+b+c)(a²+b²+c²-ab-bc-ca)+3abc
since a+b+c=0
a³+b³+c³=3abc
from (1)
3abc/abc=3=R.H.S
i.e a²/bc + b²/ca + c²/ab = 3
Hence proved
Answered by
0
Step-by-step explanation:
it is given,
a+b+c=0
(a+b) = -c
(a+b) ^3=(-c) ^3
now
(a^2/bc) +(b^2/ca) +(c^2/ab)
taking l. c. m
(a^3+b^3+c^3) /abc
(a^3+b^3-(a+b) ^3) /abc
(a^3+b^3-{a^3+b^3+3ab^2+3a^2b})/-ab(a+b)
3ab(b+a)/(ab(a+b))=3
Similar questions