If a, b and c are real numbers such that a2 + 2b = 7, b2 + 4c = -7 and c2 + 6a = -14, then find the value of
a2 + b2 + c2
(A) 14
(B) O
(C) 7
(D) cannot be determined
Answers
Answered by
5
- Step-by-step explanation:
To Find :
- we have to find the value of a² + b² + c²
Solution :
a² + 2b = 7
- a² = 7 - 2b ....(1)
b² + 4c = -7
- b² = -7 - 4c .....(2)
c² + 6a = -14
- c² = -14 - 6a ......(3)
Substituting value of a² ,b² and c² in a² + b² + c²
a² + b² + c² = 7 - 2b - 7 - 4c - 14 - 6a
a² + b² + c² = - 6a - 2b - 4c - 14
a² + b² + c² = - 2(3a + b + 2c + 7)
━━━━━━━━━━━━━━━━━━━━━━━━━
Answered by
1
we have to find the value of a² + b² + c²
Solution :
a² + 2b = 7
a² = 7 - 2b ....(1)
b² + 4c = -7
b² = -7 - 4c .....(2)
c² + 6a = -14
c² = -14 - 6a ......(3)
Substituting value of a² ,b² and c² in a² + b² + c²
a² + b² + c² = 7 - 2b - 7 - 4c - 14 - 6a
a² + b² + c² = - 6a - 2b - 4c - 14
a² + b² + c² = - 2(3a + b + 2c + 7)
value of a² + b² + c² is -2(3a + b + 2c + 7)
━━━━━━━━━━━━━━━━━━━━━━━━
Similar questions