Math, asked by adarsh8159, 8 months ago

If A ,B and C are the interior angles of ∆ABC,show that tan A+B/2=cot c/2

Answers

Answered by BrainlyConqueror0901
13

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies A,B \: and \:C \: are \: interior \: angles \: of  \:\triangle ABC \\  \\ \red{\underline \bold{To \: Show :}} \\  \tt: \implies tan  \bigg(\frac{a +  b}{2}  \bigg) =   cot\bigg(\frac{c}{2} \bigg)

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  \angle A  +  \angle B+  \angle C= 180 \degree \\  \\ \tt:  \implies   \angle A+  \angle B = 180 \degree -  \angle C \\ \\   \text{Dividing \: both \: side \: by \: 2}\\   \\ \tt:  \implies  \frac{ \angle A +  \angle B}{2}  =  \frac{180 \degree -  \angle C}{2}  \\  \\ \tt:  \implies  \frac{ \angle A+ \angle B}{2}  =  \frac{180 \degree}{2}  -  \frac{ \angle C}{2}  \\  \\ \tt:  \implies \frac{ \angle A+ \angle B }{2}  =90 \degree -  \frac{ \angle C}{2}  \\  \\   \text{Taking \: trignometric \: function \: tan \: both \: side}\\  \\  \tt : \implies  tan \bigg(\frac{ A+ B }{2}  \bigg) =tan \bigg(90 \degree -  \frac{C}{2}  \bigg) \\   \\   \tt \circ \: tan( 90 \degree -  \theta) = cot   \:  \theta\\ \\   \green{ \tt : \implies   tan \bigg(\frac{A+ B}{2}  \bigg) = cot    \bigg(\frac{C}{2} \bigg ) }\\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{ \huge{ \boxed{  \tt Proved}}}

Answered by Rudranil420
65

Answer:

⭐ QUESTION ⭐

If A ,B and C are the interior angles of ∆ABC,show that tan A+B/2=cot c/2

GIVEN

A, B and C are interior angle of ABC

TO FIND

tan(a+b/2) = cot(c/2)

ATQ

As we know the formula,

A + B + C = 180°

=> A + B = 180° - C

We have to divide both sides by 2, we get

=> A + B / 2 = 180° - C / 2

=> ∠A + ∠B / 2 = 180°/2 - C/2

=> ∠A + ∠B / 2 = 90° - C/2

We have to take tan both the sides, we get

=> tan(∠A +∠B / 2)=tan(90° -∠C/2

We know the formula,

tan(90°- θ) = cotθ

=> tan(∠A + ∠B / 2) = cot(c/2)

PROVED

_________________

Some important formula:-

1) sin(90° - θ) = cosθ

2) cos(90° - θ) = sinθ

3) tan(90° - θ) = cotθ

4) cosec(90° - θ) = secθ

5) sec(90° - θ) = cosecθ

6) cot(90° - θ) = tanθ

Step-by-step explanation:

HOPE IT HELP YOU

Similar questions