Math, asked by vdivyanshu2006, 7 months ago

if A,B and c are the interior angles of triangle ABC the sec(B+C-A/2)=​

Attachments:

Answers

Answered by ambarishbera8670
7

Answer:

option 2

Step-by-step explanation:

I hope it is helpful for you.......

Attachments:
Answered by BrainlyConqueror0901
92

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\sec \bigg(\frac{ B+  C-   A }{2} \bigg) = \frac{1}{sin \:A}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies A,\: B\: and \: C \: are \: interior \: angle \: of \:  \triangle ABC \\  \\  \red{\underline \bold{To \: Find :}}  \\  \tt:  \implies sec \bigg( \frac{B + C- A}{2} \bigg ) = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  \angle A +  \angle B +  \angle C = 180 \degree \\   \\  \tt \circ \:Subtracting \: both \: side \:  \angle A \\ \\  \tt:  \implies  \angle A+  \angle B  +  \angle C -  \angle A = 180 \degree - \angle A \\  \\ \tt:  \implies  \angle B +  \angle C-  \angle A= 180 \degree -  \angle A-  \angle A\\  \\ \tt:  \implies  \angle B +  \angle C-  \angle A  = 180 \degree - 2 \angle A \\  \\  \tt \circ \: Dividing \: both \: side \: by \: 2 \\ \\  \tt:  \implies   \frac{\angle B +  \angle C-  \angle A}{2}  =  \frac{180 \degree - 2 \angle A}{2}   \\  \\  \tt \circ \:Taking \: both \: side \: sec \\  \\  \tt:  \implies sec \bigg(\frac{B +  C -   A }{2} \bigg) = sec \bigg( \frac{180}{2}  -  \frac{2A}{2}  \bigg) \\  \\ \tt:  \implies sec \bigg(\frac{ B +  C -   A}{2} \bigg) = sec(90 - A) \\  \\  \tt \circ \: sec(90 -  \theta) = cosec \:  \theta \\  \\ \tt:  \implies sec \bigg(\frac{ B +  C -   A }{2} \bigg) = cosec \:A \\  \\ \green{\tt:  \implies sec \bigg(\frac{ B+  C -   A }{2} \bigg) = \frac{1}{sin \:A } }

Similar questions